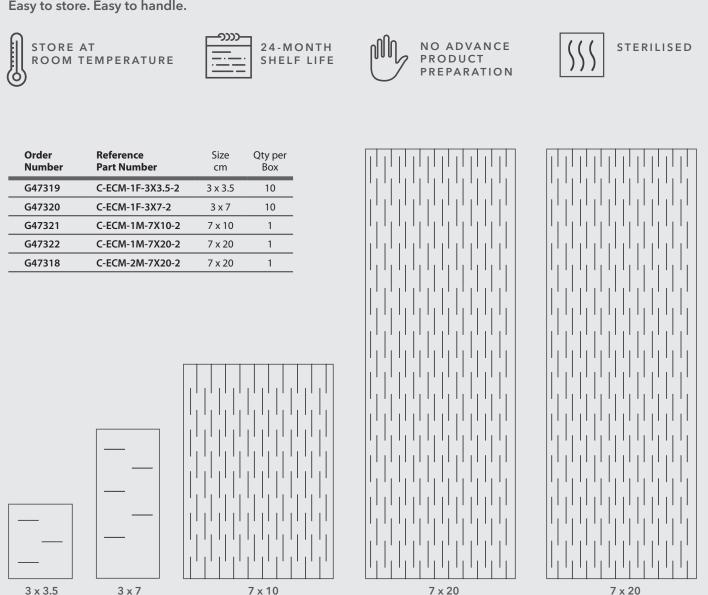


The Extracellular Matrix (ECM) is the complex environment upon which cells orient and move in response to other cells and signals.⁴ It plays an essential role in tissue maintenance and repair.⁴

OASIS Extracellular Matrix is an acellular ECM derived from porcine small intestinal submucosa (SIS). It is derived using a process that retains the natural composition of matrix molecules such as collagens, glycosaminoglycans, glycoproteins, and growth factors.⁵⁻⁹ OASIS provides an environment that allows cells in the body to secrete growth factors and divide.^{10,11}

EXTRACELLULAR MATRIX COMPONENTS ¹²	EXTRACELLULAR MATRIX COMPONENT FUNCTIONS	D E R M I S ^{19,20}	0A\$I\$ ^{5.9}
Collagens (I, III, IV, VI)	Collagens provide the framework for the infiltration of host cells and lasting strength during the remodelling process. ¹³	1	\checkmark
 Growth factors: fibroblast growth factor (FGF-2) connective tissue growth factor (CTGF) transforming growth factor beta (TGF-B) 	Growth factors play a role in angiogenesis, vascular repair and development, and cell migration and proliferation. ^{14,15}	1	1
Glycoproteins, such as fibronectin and other protein- carbohydrate complexes, such as proteoglycans and glycosaminoglycans	These non-collagen proteins act as chemo-attractors, provide cell attachment sites in the matrix, and help regulate the complex processes of cell migration, proliferation, and differentiation. ¹⁶⁻¹⁸	1	 Image: A start of the start of


Indications for use

- Abrasions
- Burns (second-degree only)
- Chronic vascular ulcers
- Diabetic ulcers
- Donor sites

- Lacerations
- Post-surgical dermal wounds
- Pressure ulcers
- Skin tears
- Venous ulcers

Easy to store. Easy to handle.

Single-Layer Fenestrated

Single-Layer Meshed

7 x 20 Single-Layer Meshed

7 x 20 Two-Layer Meshed

Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D; OASIS Venus Ulcer Study Group. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. *J Vasc Surg.* 2005;41(5):837-843.
 Niezgoda JA, Van Gils CC, Frykberg RG, Hodde JP. Randomized clinical trial comparing Oasis Wound Matrix to Regranex Gel for diabetic ulcers. *Adv Skin Wound Care.* 2005;18(5 Pt 1):258-266.
 Gilt J, Kawecki M, Kitala D, et al. A new option for definitive bur wound closure - pair matching type of retrospective case-control study of hand burns in the hospitalised patients group in the Dr Stanislaw Sakiel Centre for Burn Treatment between 2009 and 2015. *Int Wound J.* 2017;14(4):5849-585.
 Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. *Tissue Eng.* 1996;2(3):209-217.
 Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. *Tissue Eng.* 1996;2(3):209-217.
 Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. *Tissue Eng.* 1996;2(3):209-217.
 Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. *Tissue Eng.* 1996;2(3):209-217.
 Hodde JP, Badylak SF, Chone RM. Transforming growth factor-beta 1 in a strailized tissue derived from the pig small intestine submucosa. *J Biomed Mater Res Part A.* 2003;7(2):637-640.
 Hohde JP, K. Chone RM. Transforming growth factor-beta 1 in a strailized tissue derived from the pig small intestine submucosa. *J Biomed Mater Res Part A.* 2003;7(2):637-640.
 Hohde JP, Back T, Meweare VM. The extracellular matrix astaffeld: part II. Bioacti

Single-Layer

Fenestrated

For detailed product information, including indications for use, contraindications, nd precautions, please consult the product's Instructions for Use (IFU) prior to use.